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J .  Phys. A :  Gen. Phys., Vol. 5, January 1972. Printed in Great Britain 

Nonlinear plasma instability effects for subharmonic 
and harmonic forcing oscillations 

BE KEEN and W H W FLETCHER 
UKAEA Research Group, Culham Laboratory, Abingdon. Berks, U K  

MS received 17 June 1971 

Abstract. Results are presented which show that a marginal ion sound instability in a plasma 
behaves in a manner similar to that predicted by a Van der Pol type of nonlinear equation. 
including anharmonic terms. Experiments have been performed in which the system is 
subjected to an external driving force at the fundamental frequency wo, and the subharmonic 
frequencies, which shows that the instability exhibits characteristics similar to the classical 
nonlinear phenomena of ‘jumps’ including the associated hysteresis effect. When the 
system is driven by a forcing oscillation at the harmonic frequencies 2w, or 3w0. the 
instability behaves differently from linear forced resonance. and exhibits a behaviour 
similar to a parametric oscillator. A theory developed to describe this ion sound instability 
under these various conditions, is compared with the experimental results. and good 
agreement is obtained. 

1. Introduction 

Essentially, a plasma is a nonlinear medium. In the case, when the amplitudes of any 
selfexcited oscillations or perturbations in a plasma are small, a linear theory may be 
applied to describe the propagation characteristics and dispersion relationship in this 
medium. In the past, this procedure has been generally adopted in comparing the 
results obtained on selfexcited oscillations or instabilities present in a plasma with 
theoretical predictions, even when the instability amplitude is large. In a number of 
cases, considerable success has been achieved (eg Hendel er al 1968). However, in order 
to explain, the amplitude characteristics of these various kinds of instabilities and how 
the amplitude saturates at a finite level, rather than growing to infinite proportions, a 
nonlinear theory is required. This has led to much recent interest in the possible nonlinear 
mechanisms which cause this amplitude saturation, and a number of possibilities have 
been suggested. These include anharmonic effects (Hsuan 1968), mode-mode coupling 
(Stix 1969) and wave-particle scattering (Dupree 1968). In particular, the mode-mode 
coupling approach appears to give rise to the plasma instability behaving as a classical 
Van der Pol (1922) oscillator. 

In 0 2, this paper develops a theory starting from the two-fluid equations of motion. 
A nonlinear equation af the Van der Pol type (including anharmonic terms) can be 
obtained to describe the temporal variation of density perturbations of the ion sound 
instability. Further, it has been shown that when this system is in its marginal state and 
is subjected to external driving oscillation at a frequency o, forced resonance oscillations 
are observed at the instability frequency oo which are of two types. The two types 
depend upon the frequency of the driving oscillations o and are observed when (i) 
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subharmonic driving oscillations w 1 w , / m  (m = 1,2,3, .  . .) and (ii) harmonic driving 
oscillations w = mw, ( m  = 2,3, .  . .) are employed. 

Section 3 continues to describe the apparatus, the nature of the instability in the 
apparatus, and the method employed to apply externally derived oscillations in the 
plasma. In 0 4, the results obtained in the two regimes, (i) for subharmonic drives and 
(ii) for harmonic driving frequencies, are presented. Finally, 0 5 compares these results 
with the theory developed, and suggests how this technique can be used to obtain 
information on the nonlinear mechanisms in a plasma, and the nonlinear parameters 
relating to a particular instability. 

2. Theory 

The plasma stability was investigated by using the ‘two-fluid’ model, in Cartesian geo- 
metry, to describe the motion of the electrons and ions separately. The electron equation 
of motion is given by 

dv e Te m e  = e V 4 - - v e  x B o + - V n  
dt c n 

where U, is the electron velocity, T,  the electron temperature, n the plasma density and 
Bo the axial magnetic field, which is taken in the z direction. 

As the instability of interest in this situation is an m = 0 ion sound wave, only spatial 
variations of the form exp(ik,z) need be considered, when k ,  is the axial wavenumber 
associated with this wave. The density n is taken of the form n = n,+nl  , where no 
is a steady state average value, and n ,  is an oscillatory value which is a time varying 
function of z .  The potential 4 is taken with zero steady state value, and a finite oscillatory 
value q51. In the low frequency approximation, electron inertia effects may be neglected, 
and the z component of equation (1) reduces to 

In the ion equation of motion, inertia effects are important, and this equation is given by 

dui e 
dt C 

M - + M v v i  = - e V 4 + - v i x B ,  (3) 

where v is the ion neutral collision frequency, and vi  the ion velocity. In this case, the 
nonisothermal situation has been considered in which Ti << T,,  and so the pressure 
gradient term has been ignored. 

The ion equation of continuity is 

an 
d t  - + V .  (nu,) = Si(n, T,,  E).  (4) 

Here Si is an ion source term which can be caused by the presence of large amplitude 
fluctuations in the plasma creating plasma locally by electron heating effects, local 
ionization, etc. Consequently this source Si is a function of local density n, electron 
temperature T,  and local electric field E. It has been shown previously (Keen and 
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Fletcher 1969, 1970) from thermodynamic arguments (Hsuan 1968) that this source 
term is given by an expression of the form 

( 5 )  
where wo = k,c, >> U, pn,, and yn:, c, = (T,/M)”’ is the ion sound velocity and oo 
is the ion sound instability frequency. Strictly, there should be a source term in the 
momentum equation but under the condition t( << w o ,  it can be neglected. 

between equations (2), (3), (4) and (5 ) ,  a differential 
equation for the time varying portion of the density is obtained, namely 

Si = an 1 - P  n i - y -  . . .  

By eliminating v i ,  U, and 

d2i7, dn 
- + L { ( v  - x )  + 2pn1 + 3;~:)  +coin, + pvn: +;w: = 0. dt2 dt 

It can be shown (Van der Pol 1922) that an equation of this type has a selfoscillatory 
solution when ( v  - U )  < 0. In this case, the initial linear growth rate is (U - v)/2, and 7 is 
a nonlinear saturation coefficient which limits the steady state selfexcited oscillation 
amplitude at frequency coo to a value {4(a- ~ ) / 3 7 ) ” ~ .  

Under the condition that (v-a) > 0, the instability is damped and no selfexcited 
oscillation occurs in the system. This is the situation which is considered in this paper. 
However, when the system is subjected to an external forcing oscillation of frequency 
w (not necessarily equal to wo)  the oscillation at coo may be made to reappear. Consider 
the case in which the system is subject to a driving force of the form A sin ut, then the 
temporal variation of density is given by 

d2n, dn, 
---+-{(I,- a)+ 2pn, + 37n:) + win1 = co2A sin cot - vbn: - vyt7;. 
dt2 dt ( 7 )  

2.1. Forcing oscillations near the fundamental OY its subharmonics 

Consider the case when (v - a) = k > 0, and that the forcing oscillation is at a frequency 
w close to wo (w = wo +Aw, Aw << wo). Then, this equation reduces to a standard 
anharmonic forced resonance type of equation (Minorsky 1962) which can be written as 

=+winl  d2n, = f ( n l , z ]  dn1 +w$4sin(wo+Aw)t 

where 

If a trial solution of the form n l  = b cos(ot+ $) is adopted where $ is a phase angle 
and w = (wo + Am) then upon substitution into equation (8), a cubic equation in b2 is 
obtained, correct to second order. Under the condition that k >> yb2, this equation 
becomes 

b 2 { (  ~ A U - ~ )  3vyb2 + k ’ )  = wiA2 
(9) 

The real roots of this cubic equation give the amplitude b of the forced oscillations as 
w is varied around coo. When the driving amplitude A is small, b is fairly small, and the 
second term in the bracket on the left hand side of equation (9) may be neglected. This 
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equation reduces to a standard symmetrical resonance curve, as shown in figure l(a), 
with a maximum amplitude at m = mo.  As A increases the curve changes its shape, 
but retains its single maximum which moves to positive Am, as in figure l(b). When A 
reaches a certain value A,, the nature of the curve changes. At this value equation ( 9 )  
has three real roots for certain values of Am, corresponding to those values in the region 
BCDE, in figure l(c). The limits of this range are determined by db/d(Am) = m, which 

Figure 1. Theoretical instability amplitude as a function of frequency near w,,, for increasing 
drive amplitude. See text for (a), (b) and (c). 

holds at  the points C and D. It has been shown (Minorsky 1962), that the dashed portion 
of figure l ( c )  corresponds to an unstable region, and any small perturbation of the 
oscillator causes the system to ‘jump’ from the state C to E, or D to B. Consequently, 
if the frequency is gradually increased from A the path ABC + EF is followed, and if 
the frequency is decreased starting from F, the path FED + BA is followed. Hence, 
in this case, the system shows an ‘hysteresis’ effect. The points C and D are given by 
db/d(Am) =: x) which reduces to 

6vyAmb2 27v2y2b4 
+ k 2  = 0. 

-k 160; 
~(Ao) ’  - 

WO 

The maximum amplitude b ,  is reached at that value given by db/d(Ao) = 0. This is 
when 3vyb:, = 8woAm, and from equation ( 9 )  gives 

m0A b, = - 
k ’  

Similarly, if the subharmonic drive proportional to B sin %mo + Aw)t is employed, 
an equation similar to equation (9) is obtained. In this case, A is replaced by 8 p B 2 / 9 w i ,  
and the maximum amplitude now occurs at 

In the same way, effects should occur at the fundamental frequency mo for forcing 
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oscillations at w,/m, where m = 2,3,4,5, .  . . , etc, but in these cases the expansion of the 
source term Si given by equation (5) must be taken to the term in ny. 

2.2. Forcing oscillations near the second harmonic (w z 20,) 

If the substitutions wt = T ,  and n ,  = w,x/P are made in equation (7), the following 
reduced equation is obtained 

B A  . L' v.; 2Aw 
+ x  = -sin2t--x2--x3+-x. (13) 

0 0  P2 0 0  

This equation can be put in the form 

d2x 
-+x = A s i n 2 ~ f F  
d t2  

where F(x, dx/dT) is a small nonlinear term which produces a small perturbation on the 
harmonic solution, and is given by 

where A , ,  A , ,  A , ,  k ,  and g may be seen by comparing equations (15) and (14). This 
type of equation can be solved (Mandelstam and Papalexi 1932) by adopting a trial 
solution of the form 

A . 
x = a 2 s i n ~ - b , c o s t - - s i n 2 r  

3 

(16) 

where $ is a phase angle and X is the amplitude of the oscillation produced at frequency 
0 0 .  

By substitution of this trial form of solution into equation (14), the following relation- 
ships relating a, and b ,  are obtained : 

i. . 
3 

= X sin(t - IC/) - - sin 2t 

If { X 2  +(2A2/9)} = Y 2 ,  an equation quadratic in Y 2  can be obtained 

This equation can be put in the form 

Y 4 + Y 2 G ( g , i ) + H ( g , i )  = 0 (19) 

where the variables g(Aw) and A(A) are related to the shift of the driving frequency Aw 
from exact second harmonic (20,) and the driving amplitude A .  
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A solution for the amplitude X at the fundamental frequency is 

The principal solution corresponds to real values of X ,  that is, X 2  > 0. Since the 
term - 2A2/9 is always negative, the sum of other terms on the right hand side must be 
positive and greater than 2i2/9 to fulfil this condition. Mandelstam and Papalexi (1932) 
have shown that there is a minimum value of A(A) required for oscillation to set in, and 
there is an upper limit for &4) as well above which oscillation will not occur. They 
have considered the stability of the situation and find that for exact resonance (w = 2w,), 
when Aa I= 0 = g, that a relationship between the amplitude X and the drive amplitude 
A ( a A )  as shown in figure 2, is obtained. It is apparent that oscillations at wo only occur 

0 Drive amplitude (XI 

Figure 2. Theoretical predictions of the square of the instability amplitude (X’) as a function 
of the drive amplitude E.. 

in the region of drive amplitude between i1 and Further, they have shown that if 
the drive amplitude is in this range (A, < i. < 12), that oscillations exist even if the exact 
resonance condition (w = 2w,) is not satisfied, and that there is a range of Am( a g )  on 
either side of 2a,, where oscillation at wo exists. The relationship between the amplitude 
and the frequency range can be found from equation (20), and is as indicated in figure 3. 
The curve (a )  for I, drive is that corresponding to the maximum amplitude value at  
exact resonance and curve (b) corresponds to a drive value where A # A o .  I t  is seen that 
this phenomenon differs radically from classical linear resonance, which has the 
appearance shown by the broken curve in figure 3. 

2.3. Forcing oscillations near the third harmonic (a = 30, + A a )  

In this case, equation (14) has the form 

-+x = Asin3r+F 
d2x 
dr2 

where F(x, dxldr) has the value given by equation (15). 
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g l  
% 1 

$ 1  

0 
Frequency change I A  W )  

Figure 3. Theoretical prediction of the square of the instability amplitude as d function of 
the change in frequency AOJ for the case ( U )  / = / a ,  the optimum value of / and ( h )  / # / c l  

In the same way, a trial solution of the following form is adopted: 

1. x = u3s in~-b3cos r - - s in32  
8 

/. 
= X sin(r - $) - - sin 32. (22) 

Upon substitution of the trial form in equation ( 2  l), the following relationships must 
be satisfied for equation (22) to be a solution : 

8 

a3 { k + $ [ X 2  + G) ] + b { ?[ X 2  + I,f ) - g ]  

3a,b3iA2 (a: - b:)i.A, 
16 32 

- - - 

iA3a,b3 (a: - b:)3AA2 
32 ’ 

+ - - 
16 

If ( X 2  +i2/32) = Y2, then equations (23) can be reduced to 
A 3 Y 2  3A2Y2 2 

( k + l j  + ( , - p j 2  = (A) (9A:+A:) 
This equation is of the form 

Y 4 +  Y2M(n,g)+N(i. ,g) = 0 (25) 

and has a solution 

i2 1 1 
32 2 2 

X 2  = ----M(2, g )+-{M2( i ,  g)-4N(A, g))”2 
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This solution has a similar form to that given by equation (20). Consequently, the varia- 
tion of oscillation amplitude X at oo, with drive amplitude A is anticipated to have a 
similar variation to that indicated in figure 2.  Similarly, the variation of amplitude X 
with frequency near 300, should show a relationship to that indicated in figure 3. 

3. Experimental details 

In these experiments, the plasma used was the positive column of a neon arc discharge, 
similar to that described previously (Keen and Fletcher 1970), and a cross section of 
the experimental set-up is shown in figure 4. The discharge was formed by applying a 
DC potential between a mercury pool cathode and a stainless steel anode. The mercury 
content in the main discharge tube was reduced to  a small level by pumping with a 
combination of mercury diffusion pump close to the pool, and a liquid N, cooled cold 
trap above the pool. The plasma was contained in a glass tube (diameter 5 cm, 180 cm 
long) by a homogeneous ( ~ 0 . 5 % )  axial magnetic field. This field was variable up to 
250G, but in these experiments was held constant at about 150G. Neutral neon gas 
was introduced into the tube near the cathode end, and its pressure could be maintained 
at a constant value by varying the leakage rate or the pumping rate. 

dated gas feed Photodiode on Regulated gas feed 
\ ,Cold trap track \ 

la1 probe 

Figure 4. Cross section of experimental apparatus 

Access to the plasma was provided by experimental ports situated along the glass 
tube, and various interchangeable probes could be inserted at these points. A radially 
moveable double probe was used to measure the density and electron temperature (T,) 
profiles of the plasma. The density profile was found to be approximately parabolic in 
profile with a peak density of approximately 2.5 x IO" cm-3 at an arc current of 2 A. 
The electron temperature T,  was found to be approximately constant in the radial 
range r = 0-2 cm with a value T, = 5.4 k 0-2 eV. 

Another probe, inserted from the anode end plate, which could be moved axially 
and radially was used to observe the instability characteristics, as a function of axial 
position. Outside the glass tube was an axially moving photodiode. This was used to 
observe density fluctuations in the plasma, and as it was remote from the plasma did 
not interfere with any of the plasma parameters. 

Initially, the plasma was started with a selfexcited oscillation or instability present. 
These oscillations were observed with predominantly a single frequency oo z 7.1 kHz, 
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and its radial amplitude, and azimuthal phase variations were consistent with an azi- 
muthal mode number m = 0. The axial phase and amplitude measurements showed 
that the wave was a standing wave in this direction and was four half wavelengths long. 
The wavelength was approximately 80 cm, and at the frequency of 7.1 kHz this resulted 
in a phase velocity of 5.7 x lo5 cm s- l ,  compared with the ion sound velocity 
cS = (T,/M)’’’ = 5.1 x io5 cm s-’.  

Further experiments were performed to determine the frequency and wavelength 
variations in both neon and argon plasmas, as the plasma parameters were varied. 
These variations taken with the facts that the instability frequency was independent of 
magnetic field and peak density, and that the instability required a critical current for 
its onset, suggested its identification as an ion sound instability. 

After its identification, the.oscillation was reduced to its marginal state, such that i t  
was no longer selfexcited. This could be achieved either by decreasing the growth mech- 
anism (by reducing the arc current) or by damping the wave (by increasing neutral 
pressure and thus the ion-neutral collisions frequency v). In this case, the latter method 
was adopted, and the neutral pressure was maintained at about 20mTorr. The 
increased pressure had some effect on the wave frequency, and this was found to reduce 
slightly to approximately 64-7.0 kHz, just before the oscillation was quenched. 

It was in this marginal state, that the experiments were performed. External signals 
at frequencies wo/m and moo (m = 1,2,3, .  . .) were coupled into the plasma from a 
small magnetic coil wound around the glass plasma tube, which could be moved axially 
and set at any desired position along the tube. An AC current at the required frequency 
w through the coil, produced an AC magnetic field B, in the plasma. This field had the 
effect of ‘squeezing’ and ‘relaxing’ the plasma, thus modifying the containment pressure 
p at this position. Consequently, this produced a density oscillation in the plasma, 
linearly proportional to the current 1 in the coil (since p” x 5 x BOBz a; 1). The effect 
on the plasma of this driving oscillation at w was monitored by feeding the output from 
a floating or ion-biassed probe on to a spectrum analyser. This allowed the instability 
amplitude at wo,  as well as the driven amplitude at w,  to be measured simultaneously. 

4. Results 

4.1. Forcing oscillations at wo/m (m  = 1, 2, 3, 4, . . .) 

Once the neutral pressure had been increased to damp out the instability, experiments 
were performed with external driving forces at frequencies near wo,  w0/2, w0/3, w0/4 
and wo/5. Typical results obtained are shown in figure 5, when the driving force was 
near the frequency w0/2. For a low driving oscillatory current ( I  = 1.05 A) the variation 
of amplitude b with applied frequency w shown in figure 5(a) was obtained. It is seen 
that a standard symmetrical linear resonance type curve was obtained, as predicted 
by equation (9). At an increased drive current ( I  = 1.4A), the variation shown in 
figure 5(b) was realized, and it is seen that the resonance curve was asymmetrical with 
the maximum amplitude value shifted to higher frequencies. When the drive current 
was increased further ( I  = 1.75 A), the variation indicated in figure 5(c) was followed. 
It is seen that as the frequency was increased gradually the path indicated by the open 
circles was followed, whereas when the frequency was decreased the path marked by 
the crosses was traversed. Therefore, a hysteresis effect was apparent, as suggested by 
the theoretical predictions and shown in figure l(c). 
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01 

3.5 4.0 
k v e  frequency (kHz1 

O' 3.0 

Figure 5. Experimental variation of instability amplitude b as a function of frequency for 
various drive currents I ,  (a) I = 1.05 A, (b )  I = 1.4 A and (c) I = 1.75 A. The open circles 
indicate the path followed for increasing frequency and the crosses, that followed for 
decreasing frequency. 

For this drive frequency near 00/2, the maximum amplitude b,  was measured as a 
function of the drive current I .  This variation is plotted in figure 6 as b, against the 
current squared (Iz). It is seen that a good linear variation (b,  a B2 K Z 2 )  is apparent, 
as predicted by equation (12). 

Similar variations to those indicated at o 'v 00/2 were observed when forcing 
oscillations near o = wo were used. When forcing at frequencies near 00/3, 00/4 and 
00/5, insufficient oscillatory current flowed in the driving coil in order to obtain asym- 
metrical resonance and hysteresis effects. However, the instability could be induced 
at wo when driving at these frequencies, and the amplitude b at oo as a function of 
frequency between W o / 5  and 00/2 for a constant drive current ( I  = 1.4A), is plotted 
in figure 7. 

4.2. Forcing oscillations near 20, 

With the frequency set at o = 2 0 ,  (wo 'v 6.85 kHz), the drive current I through the 
coil at this frequency was increased gradually, and the instability level at oo was 
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monitored. At a current I Y 0.8 A, the instability at wo appeared above the background 
noise, and as the current was increased further, this amplitude increased until at 
I = 1-3 A the instability reached a maximum value. Further increase in current reduced 
the level and the instability disappeared for currents greater than I = 1.8 A, even though 
values up to 4 A were attained. The variation of amplitude squared (X') at coo, as a 
function of the drive current I at 2w0 is shown in figure 8. 

Figure 6. Maximum instability amplitude b, as a function of the square of the drive current 
U?. 

a 
I O i o  2.0 3.0 4.0 

Drive frequency (wl (kHd 

Figure 7. Instability amplitude b as a function of drive frequency w 

At the optimum current drive ( I  2 1.3A)  the amplitude X was measured as the 
frequency was varied close to 2w,. Starting at a value w z 12 kHz, the frequency was 
increased gradually, until the instability appeared above the noise level at about 
w 2 12.5 kHz. As the frequency was increased further the amplitude X increased and 
reached a maximum value at w = 2w,, then decreased and disappeared at w = 14.9 kHz. 
This is shown in figure 9 where the square of the instability amplitude ( X 2 )  is plotted as 
a function of frequency variation. 

The observed variations in both figures 8 and 9 are similar to the theoretical predic- 
tions which were shown in figures 2 and 3 respectively. 
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1.21 

163 

Drive current at  2w0 ( A )  

Figure 8. The square of the instability amplitude Xi as a function of drive current for a 
drive frequency w = 20,. 

1 

Figure 9. The square of the instability amplitude Xi as a function of frequency w near 
w = 20, at constant drive current I = 1.3 A. 

4.3. Forcing oscillations near 30, 

Similar experiments were performed with the driving oscillations o near 30,. In this 
case, when the system was driven at w = 30, and the current increased, the instability 
amplitude X increased above noise at I N 1.2 A, and reached a maximum at I = 3.0 A. 
However, the driving current could only be increased to I = 4 A, and thus, the instability 
could not be made to disappear for higher drive currents, although it did begin to decrease 
above I = 3 A. This variation of X 2  against drive current I is shown in figure 10. 

The variation of X 2  against frequency (near 30,) is shown in figure 11, performed 
at two current values I = 1.4A, and at the optimum value I, = 3.0A. Again, the 
variation is similar to that predicted by theory and shown in figures 2 and 3. 



164 B E Keen and W H W Fletcher 

0 1.0 2 0  3.0 4.0 
Dr ive  c u r r e n t  at 30, ( A I  

Figure 10. The square ofthe instability amplitude X 2  as a function ofdrive current at (U = 3wc, 

19 20 21 2 2  
Drive frequency (kHz1 

U 

Figure 11. The square of the instability amplitude X z  as a function of the frequency ~ I J .  

near w 2 3 0 , ,  at a constant drive of (a )  I = 3.0 A, and (b )  I = 1.4 A. 

5. Discussion and conclusions 

In Q 2, it was shown that the perturbed density amplitude n,  of the ion sound wave could 
be described by an equation similar to the classical Van der Pol (1922) oscillator, but 
including anharmonic terms. Further, it was shown that if an external driving force of 
frequency w was applied to the system that this marginal instability behaved in a 
different fashion depending upon whether the applied frequency was near to a harmonic 
frequency, or near the fundamental frequency or a subharmonic frequency. 

For drive frequencies o dose to the fundamental or a subharmonic w = wo/m 
(m = 1,2,3, .  . .) theory predicts that the amplitude of the instability at wo is given by 
equation (9). At small driving amplitudes, this equation reduces to a standard sym- 
metrical forced resonance equation, which has a maximum at w = wo and a shape 
indicated in figure l(a) as the frequency is varied. At higher drives the shape changes 
and the curve becomes asymmetrical with the maximum amplitude shifted to higher 
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frequency values (figure l(b)). At even higher drive amplitudes, the classical ‘jump’ 
phenomenon is indicated and a hysteresis effect occurs, as shown in figure l(c).  A com- 
parison between the experimentally measured phenomena and these theoretical pre- 
dictions shows them to be in good agreement. 

For drive frequencies close to the second harmonic (o 2: 2w0) or the third harmonic 
frequency (w = 3w0), theory predicts that the system should behave in a manner similar 
to a parametric oscillator (Mandelstam and Papelexi 1932). The amplitude of the 
instability in each case should be given by equations (19) and ( 2 5 )  respectively. The 
predicted shape of the amplitude variation as a function of frequency is radically different 
from the classical linear resonance curve which is shown in figure 3 for comparison 
with this case. Also, theory predicts that as the drive amplitude at w(2:200 or 30,) 
is increased from zero, the instability amplitude at wo does not appear above the noise 
level until a certain drive level 1 is attained. Thus, further increasing the drive A increases 
the instability amplitude until a maximum level is reached at A,. Subsequent increase 
of 1 only reduces the amplitude level and finally goes to zero at A 2 .  This variation has 
been observed when forcing at approximately 2w0, but experimental limits prevented 
the increase of the drive level at 30, from observing the upper point at 1,. However, a 
comparison between the theoretical predictions and the experimental measurements in 
the regime shows remarkably good qualitative agreement. 

Consequently, it has been shown that good qualitative agreement is obtained 
between theory and experiment for nonlinear behaviour of the marginal ion sound 
instability in a plasma. In principle, this suggests a method for obtaining values for the 
particular nonlinear saturation coefficients p and y, and the linear growth-rate parameter 
4 2  relevant to a particular instability in a plasma. 
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